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We discuss and analyze a family of trees grown on a Cayley tree, that allows for 
a variable exponent in the expression for the mass as a function of chemical dis- 
tance, ( M ( l ) ) ~ l  d'. For the suggested model, the corresponding exponent for 
the mass of the skeleton, d~, can be expressed in terms of dr as d? ~ = 1, dr ~< d} = 2; 
d~ = dr-1 ,  d t ~> d~= 2, which implies that the tree is finitely ramified for dl ~< 2 
and infinitely ramified when d t~> 2. Our results are derived using a recursion 
relation that takes advantage of the one-dimensional nature of the problem. We 
also present results for the diffusion exponents and probability of return to the 
origin of a random walk on these trees. 
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1. I N T R O D U C T I O N  

T w o  of  the in t r ins ic  p roper t i e s  tha t  c an  be used to charac te r ize  r a n d o m  
aggregates( t  8) are the  to ta l  mass ,  ( M ) ,  a n d  mass  of  the skele ton,  ( M , ) ,  

where  the  ske le ton  of  a r a n d o m  aggrega te  is def ined  (8) to be  the to ta l i ty  of 

all shor tes t  (or  chemica l )  pa ths  a l o n g  the aggregate  be tween  two specified 

subsets.  F o r  s t ruc tures  g r o w n  o n  the Cayley  tree it is c o n v e n i e n t  to def ine 
the subsets  to consis t ,  respect ively,  of  a po in t  ( the o r ig in )  a n d  a 

s u r r o u n d i n g  shell. D e a d  ends  n o t  r each ing  the shell do  n o t  b e l o n g  to the 

skeleton.  O n  any  aggregates  one  c an  cons ide r  the  two masses  m e n t i o n e d  

earlier,  as a f u n c t i o n  of the chemica l  d is tance ,  l, a l ong  the  ske le ton  where  
the chemica l  d i s t ance  b e t ween  two po in t s  is def ined  as the shor tes t  d i s t ance  
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between them as measured along the cluster. These relations can often be 
characterized by scaling laws, so that 

<M(/) > ~ l  at, <M~(I)>~U7 (1) 

which defines the two exponents dt and d~. In this paper we discuss a new 
family of models for the growth of random aggregates on a Cayley tree that 
allows for arbitrary values of dl and d). The origin of the resulting 
aggregate is a point of asymmetry, thus we term such aggregates "point 
fractals." Because the aggregate is generated sequentially one can solve the 
equations describing the growth recursively so that no simulations are 
required in the analysis. 

2. DEFINIT ION OF THE M O D E L  

The aggregate to be analyzed is one grown on a Cayley tree charac- 
terized by discrete levels, grown from a point chosen to be the origin. In 
our model, each node on a given level is allowed to grow to i nodes on the 
succeeding level, where 0 ~<i~< n, where i is chosen probabilistically by a 
rule to be discussed below. The integer n is the maximum allowable num- 
ber of daughters that stem from a single node. The rule for choosing i will 
insure that the average number of nodes in the structure <M(1)> varies as 

< M(l) > ~ l J' (2) 

for l~> 1, where d t can be varied. Let g(l) be the average number of nodes 
(grown from a single node) in level I and let <B(l)> be the average number 
of nodes in l. This quantity is related to g(l) by 

/ - 1  

<~(l)> = [ [  g(/') (3) 
l ' = 1  

We will choose the form of g(l) so that Eq. (1) is satisfied. If we assume the 
form 

g(l) = 1 + o~/I (4) 

where ~ is a constant to be chosen to insure the validity of Eq. (2), then 

l n < B ( l ) ) =  ~ In 1 + ~  ~c~ ~ ~ c ~ l n /  (5) 
l ' = 1  l =  

o r  

<B(I)>,.~U (6) 
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The expected total number of nodes in the aggregate is therefore 

! 

( M ( / ) > ~  ~ (B(I')}...I~+~/(~+ 1) (7) 
F = I  

allowing us to make the identification 

dr= c~ + 1 (8) 

for this model. Notice that since g(l) is an average value there are an 
infinite number of ways of choosing probabilities to assure the validity of 
Eq. (4). For example, if a single node on level l can grow to at most two 
nodes on level l + 1, then we can choose for P(i), the probability that i new 
nodes are grown (i~<2): 

l 2~  1 c~ 1 c~ 
P'(O) - 4 31' P,(1) = ~ + ~ ,  P,(2) = ~  + ~  (9) 

Since the relations in Eqs. (2) and (6) are asymptotic, the parameter c~ can 
be chosen arbitrarily since Eq. (4) need only hold for l>>l. The 
probabilities in Eq. (9) generalize the usual construction 16) of a percolation 
cluster on the standard Cayley tree which corresponds to e = 0. 

Among the various possibilities we choose to study the mean field of 
the tree growth model (TGM) for trees grown on regular lattices. (91 In the 
present TGM exactly [/~] nodes are added at level l, where "[  ]" means 
"largest integer contained in." These are chosen at random from the 
h i ( l -  1) ~] possibilities allowed by the nodes in level l -  1, where n is the 
maximum number of nodes generated from a single one. When n = 2, the 
retention of lowest-order terms in l ~ and l -~ for large l, leads to the result 

P, (o)~  sl ~, P,(1)~~ 

1 
P , ( 2 ) ~  

(lo) 

Notice that in the present model there are no terminating clusters. 

3. STATISTICAL PROPERTIES OF THE SKELETON 

So far we have presented results dealing with the expected number of 
nodes contained in an aggregate containing l levels. We next consider some 
of the properties of the skeleton of the TGM defined above. To calculate 
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the behavior of <BS(l)>, the average number of nodes in the skeleton, we 
make use of a recursion relation valid for l~> 1, that essentially neglects the 
fact that l is an integer. An exact combinational recursion relationship out- 
lined in the Appendix can also be derived. This relation was found to be 
very time consuming to evaluate numerically, which led us to develop an 
alternate approximation. Several values generated by the approximate 
recursion relation were checked by using the exact one and found to be in 
excellent agreement with them; hence we restrict this discussion solely to 
the asymptotic recursion and consider the case in which a single node can 
grow to a maximum of two nodes in the following level. The generalization 
to a larger number of nodes is trivial. The quantity of interest in our 
analysis be will denoted by at, which is defined to be 

a l =  <8~(/)>/<8(/)> (11) 

i.e., the fraction of the number of nodes in t h e / t h  level that belong to the 
skeleton. The definition of our model implies that the quantity 

o, = < B(l) >/E2 < B ( l -  1) > ] = l=l[2(l-  1 )~] (12) 

is the probability that a node at level l -  1 will produce a connected node 
at level I. Finally we let qt be the conditional probability that a node at 
level l - 1  that produces at least one node at level l, will produce exactly 
two nodes. Thus qt can be expressed in terms of 0t as 

q, = 0~/[0~ + 20z(1 - 0,)] = 0l/(2 - 0l) (13) 

With these definitions in hand we can write the following recursion relation 
for the a /  

at i = [1 - ( 1  --0/)2]{[1-(1-at) 2] q ,+  a~(1-ql)}  

= (2 - 0la1) O,al (14) 

The first term in the square brackets represents the probability that a node 
at level l -  1 will produce at least one node at level l. The second factor, in 
curly brackets, gives the contributions from double bonded nodes (with 
probability ql) and those from singly bonded nodes. Equation (14) is a 
backwards recursion which is to be started from a level L~> 1. Since any 
node that appears at this final level is necessarily a part of the skeleton one 
starts the recursion with ac = 1, together with the values of 01 shown in 
Eq. (12). The results of using the recurrence Eq. (14) are shown Fig. 1 as a 
plot of ln<B~(/)> as a function of in l, for different values of ~ and L. This 
suggests that as L increases ln(< BS(l) >)/ln l =- A / approaches a constant for 
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l < l < L ,  the cons tant  depending on whether  c~ is greater,  or  less than  1. 
Fo r  any c~< 1, A t approaches  zero as l ~  ov and for ct> 1, A t approaches  
the value c~-1 .  This behavior  can be verified analytically f rom the 
recurrence relat ion in Eq.(14) .  Let suppose that  (B ' ( l ) )  has the 
asympto t ic  scaling form 

(8~(t))~K- t~; l~>l (15) 

where K is a constant.  Then, because of Eq. (11) it follows that  

at ~ K'l . . . .  (16) 

where K' is ano ther  constant.  If  this, together  with the large 1 form for 0t, 

0 1 c~ 
t ~ ( 1  + 7 )  (17) 

is substi tuted into Eq. (14), and only the lowest-order  terms in l are 
retained, then one finds 

Kt 
�9 l ~  (~ - 1) ~ = ~  (18) 

In order  for this relation to be consistent as l ~ oo it is necessary that  e ,  = 
c~ - 1 whenever  ct ~> 1, so that  K' = 4(~ - 1 ). When  ~ < 1, since it is assumed 
that  cq > 0, it follows f rom the fact that  e~, - (c~ - 1 ) > 0 that  K' = 0 which 
implies also that  c q = 0 .  The relation between dt and c~ is given in Eq. (8), 
and similarly d~ and c~, are related by d~ = ~, + 1. Consequent ly  the facts 
just  established for the ct's imply that  

d~=dl-  1, dt>~d}=2 
(19) 

= 1, d t ~< d~ 

In a recent s tudy (1~ we have found that  the chemical diffusion exponent ,  
dw, defined by the relation 

( l ) a ~ t  (20) 

can be expressed in terms of dt and d) by 

d~ = 2 + d, - d] (21) 

In Eq. (20) ( l )  is the average displacement  of a r a n d o m  walk that  starts at 
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the origin of the tree. The combination of Eq. (19) and the results just 
given leads to 

d~,, = dz + 1, d~ ~< 2 

=3,  dt~>2 
(22) 

The result for d r=2  is the same as found for diffusion on percolation 
clusters on a Cayley tree. (2/ 

4. S U M M A R Y  A N D  D I S C U S S I O N  

To summarize, we have presented a model of random aggregates 
grown on the Cayley tree in which the intrinsic dimension, d~, of these 
aggregates can be varied. The model is a mean-field analog of the 
corresponding aggregates grown in regular space] 91 We find that for dt 
below d~'= 2 the aggregate's skeleton is linear, while for d~> d~= 2 the 
skeleton's mass scales with I as ~ M ) ~ 1 4 ,  where d ) = d t - 1 .  When dif- 
fusion only occurs on the skeleton dr,,. = 2 for all dt as shown elsewhere. (9t 
We see that the effect of dead ends is to increase dr by 1 (from 2 to 3) for 
dz >/2. It is also interesting that although the exponent dZw is independent of 
dt when dz/> 2 the probability of return to origin, characterized by the frac- 
ton dimensionality d, does vary with dl. (71 

= 2d~/(d t + 1 ), d~ <. 2 
(23) 

= 2d~/d,. = 2d~/3, d, >~ 2 

The model studied in this paper can be regarded as a mean-field 
analog of the TGM (9) consisting of random treelike aggregates grown on 
regular lattices. Numerical results for the TGM on a square lattice shows 
that for d~< d' i = 1.65 _+ 0.05 the resulting skeleton is linear (d~ = 1 ), while 
for d l>  d}' it is nonlinear (d)> 1). This bifurcation in behavior is also 
reproduced in the present model. Finally, we note that if ~ is the exponent 
of the total resistance between the origin and level l, i.e., R ( l ) ~  F ~ for large 
l, then (~ satisfies ~1~ 

(t = dlw -- d~ (24) 

which implies by Eq. (22), that (~= 1 for d~<2 and ~ t = 2 - d } = 3 - d t  for 
d~> 2. This also agrees with the relation found by a scaling argument for 
the resistance between the origin and shell l of the tree. (1~ 
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APPENDIX 

To calculate d~ we must find an expression for (BS(l)). This quantity 
can be written as an average over the probability that level l has i nodes, 
Pt(i): 

B(I) 
<B~([)) = ~. iP,(i) (A1) 

i 1 

The probabilities {Pt(i)} can be derived by means of a recursion relation. 
Let f(i, k, n) be the probability that exactly i nodes will have one or two 
growing branches conditional on k nodes at a given level growing to n 
nodes on the following level. Then we have 

2i 
Pt ~(i)= ~ Pt(j)f(i, B ( I -  1),j) (a2)  

l = l  

together with a starting value PL(i) = 6B(L).,. This starting value is valid for 
the present model in which the B(/)'s are deterministic. The case of random 
B(l) will be considered in a future investigation. 

Finally, in order to use Eqs. (A1) and (A2) we need an expression for 
f(i, k, n). This can be derived by a combinatorial  argument and is found to 
be 

k! 2 2i " / (2k)! 
f ( i , k , n ) = ( n _ i ) [ ( 2 i _ n ) ! ( k _ i ) ! / n ? ( 2 k _ n )  [ , O<~i<~n<<.2i<.2k 

(A3) 

where n - i is the number  of sites having both nodes grown, 2 i -  n have one 
node grown each and k - i  having no nodes grown. 
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